

# **Artic**<sup>®</sup> Mould Chart



# Anteriors

**Artic® 6** is a multilayered, life-like, esthetically pleasing anterior tooth. This anatomically shaped tooth permits perfect adaptation to existing dentition and to complete dentures. It is available in 16 shades A1-D4 and 33 anterior moulds.

The characteristic multilayered structure of Artic 6 allows exact matching of reflection curves in both natural and artificial teeth. With its high degree of translucency in the incisal and approximal regions, it offers dentists and their patients anterior teeth with an appearance guaranteed to match natural dentition under all ambient or artificial lighting conditions.

# Posteriors

The **Artic 8** posterior tooth is available in 22 posterior moulds that provide a superior physiological function, accurate intercuspal relationship, perfect occlusion and an even distribution of the masticatory load. The unique hollow neck improves bonding to the denture base material. Artic 8 guarantees fast and easy laboratory set up and first time fit in the patient's mouth.

# The posteriors are available in four different angulations

### Artic 8-0°

- Multi-layered posterior tooth with a unique plane flat occlusal surface
- Gentle on soft tissue due to elimination of all horizontal components. Lateral shear is reduced to a minimum on the denture-supporting tissue making the fit comfortable for the patient

### Artic 8-10°

- Multi-layered posterior tooth for all indications
- Unique occlusal surface guarantees unrestricted movements and easy occlusion
- Multiple contact points

### Artic 8-20°

- Multi-layered posterior tooth with functional contouring of occlusal surface
- Exact centric occlusion
- Multiple contact points
- Optimum intercuspidation

### Artic 8-30°

- Multi-layered posterior tooth with functional contouring of occlusal surface
- Exact centric occlusion
- Natural occlusal intercuspidation

# Artic — Srong. Beautiful. Economical.

|                     | Upper anteriors | Lower anteriors | U/L Posteriors | U/L Posteriors 10° | U/L Posteriors 20° | U/L Posteriors 30° |
|---------------------|-----------------|-----------------|----------------|--------------------|--------------------|--------------------|
| Ovoid               | 0 10            | L 10            | 30             | 30                 | 30                 | 30                 |
|                     | 0 20            | L 30            | 30, 32         | 30, 32             | 32                 | 32                 |
|                     | 0 30            | L 40            | 32             | 32                 | 32                 | 32, 34             |
|                     | R 20            | L 20            | 32             | 32                 | 32, 34             | 32, 34             |
|                     | R 30            | L 25            | 32             | 32                 | 36                 | 34                 |
|                     | R 40            | L 55            | 32             | 32                 | 36                 | 34                 |
|                     |                 |                 |                |                    |                    |                    |
|                     | S 05            | L 05            | 30             | 30                 | 30                 | 30                 |
|                     | S 10            | L 10            | 30             | 30                 | 30                 | 30                 |
|                     | S 20            | L 20            | 30, 32         | 30, 32             | 32                 | 32                 |
| Square              | S 30            | L 40            | 32             | 32                 | 32, 34             | 32, 34             |
|                     | S 35            | L 55            | 32             | 32                 | 36                 | 34                 |
|                     | S 40            | L 55            | 32             | 32                 | 36                 | 34                 |
|                     |                 |                 |                |                    |                    |                    |
|                     | T 10            | L 10            | 30             | 30                 | 30                 | 30                 |
|                     | T 15            | L 15            | 30, 32         | 30, 32             | 32                 | 30, 32             |
| ∧ Triangular        | T 20            | L 30            | 30, 32         | 30, 32             | 32                 | 32                 |
|                     | Т 30            | L 20            | 32             | 32                 | 32                 | 32, 34             |
|                     | Т 35            | L 40            | 32             | 32                 | 32                 | 32, 34             |
|                     | T 40            | L 50            | 32             | 32                 | 34                 | 34                 |
|                     | 70.05           | 1.05            | 20             | 20                 | 20                 | 20                 |
| Triangular<br>ovoid | 10 05           | L 05            | 30             | 30                 | 30                 | 30                 |
|                     | 10 10           | L 15            | 30             | 30                 | 30                 | 30, 32             |
|                     | TO 20           | L 20            | 30, 32         | 30, 32             | 32                 | 32, 34             |
|                     | TO 30           | L 40            | 32             | 32                 | 32                 | 34                 |
|                     | TO 40           | L 45            | 32             | 32                 | 34                 | 34                 |

### Mould numbers and possible combinations

Heraeus Kulzer teeth meet and exceed all the requirements of DIN EN ISO 22112:2006.

# Anteriors



# Anteriors

| <b>TO 20</b> | $ \begin{array}{c} \frac{48.5}{43.8} \\ \underline{9.6} \\ 7.9 \end{array} $                                             | L 25                                                            |                                                                |                                                           |                                                      |                                                      |                                                      | 42.0<br>37.0<br>9.2<br>5.7                                                                     |
|--------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------------------------------------|
| то зо<br>    | $ \begin{array}{c} 50.1 \\ 45.9 \\ 10.4 \\ 8.6 \end{array} $                                                             | L 30                                                            | 9                                                              | 777                                                       |                                                      |                                                      |                                                      | 41.3<br>35.9<br>9.0<br>5.5                                                                     |
| <b>TO 40</b> |                                                                                                                          | L 40                                                            |                                                                |                                                           |                                                      |                                                      |                                                      | 40.8<br>36.0<br>9.0<br>5.5                                                                     |
| L 05         | 34.6<br>31.5<br>9.0<br>5.0                                                                                               | L 45                                                            |                                                                |                                                           |                                                      |                                                      |                                                      | 44.0<br>38.9<br>9.6<br>5.9                                                                     |
| L 10         | $ \begin{array}{c} \frac{36.0}{33.5}\\ \frac{7.8}{5.1} \end{array} $                                                     | L 50                                                            |                                                                |                                                           | 70                                                   |                                                      |                                                      | 44.9<br>39.2<br>11.1<br>5.9                                                                    |
| L 15         | 37.2           33.9           9.5           5.2                                                                          | L 55                                                            |                                                                |                                                           |                                                      |                                                      |                                                      | 48.6<br>40.1<br>10.6<br>6.1                                                                    |
| L 20         | 39.9<br>35.5<br>8.9<br>5.3                                                                                               | Mould compa<br>Upper anteriors<br>Classic™<br>134<br>136<br>137 | Artic <sup>®</sup><br>O 20<br>S 30<br>S 35                     | Lower anteriors<br>Classic <sup>™</sup><br>2C<br>3M<br>2D | Artic<br>L 10<br>L 05<br>L 20                        | Posteriors<br>Angulation<br>0°<br>0°<br>10°          | Classic™<br>29M<br>31M<br>F30                        | Artic<br>0°-30 U/L<br>0°-32 U/L<br>10°-30 U/L                                                  |
|              | <u>S 10</u><br>curved plane 49.9<br>flat plane 44.2<br>7.9<br><u>L 10</u><br>curved plane 36.0<br>flat plane 33.5<br>7.8 | 1H<br>2D<br>3D<br>2N<br>A24<br>A25<br>A26<br>3M                 | T 40<br>0 10<br>TO 05<br>T 15<br>TO 10<br>T 20<br>T 35<br>S 05 | 2N<br>3D<br>3N<br>2E<br>46<br>4H<br>3P                    | L 15<br>L 40<br>L 25<br>L 30<br>L 45<br>L 55<br>L 50 | 10°<br>20°<br>20°<br>20°<br>20°<br>30°<br>30°<br>30° | F32<br>29M<br>31M<br>33M<br>34M<br>30M<br>32M<br>34M | 10°-32 U/L<br>20°-30 U/L<br>20°-32 U/L<br>20°-34 U/L<br>30°-30 U/L<br>30°-32 U/L<br>30°-34 U/L |
|              | 20°- <u>30 U/L</u><br>29.2<br>20°- <u>30 U/L</u><br>31.0                                                                 | 3P<br>263<br>264<br>266<br>267<br>Classic™ is a tradem          | O 30<br>R 20<br>T 30<br>R 30<br>R 40<br>emark of Dents         | sply International Inc<br>Kulzer, LLC.                    |                                                      |                                                      |                                                      |                                                                                                |
|              | 20°- <u>7.6</u><br>7.6<br>20°- <u>6.9</u><br><u>30 U/L</u>                                                               |                                                                 |                                                                |                                                           |                                                      |                                                      |                                                      |                                                                                                |

# Posteriors

| 30 U<br>30 L | °O          | 28.9<br>8.4<br>30.7<br>9.1                             |
|--------------|-------------|--------------------------------------------------------|
| 32 U<br>32 L | °           | 33.1<br>8.8<br>34.8<br>9.2                             |
| 30 U<br>30 L | <b>10</b> ° | <u>29.4</u><br><u>8.8</u><br><u>31.0</u><br><u>7.9</u> |
| 32 U<br>32 L | <b>10</b> ° | 32.1<br>9.5<br>35.3<br>8.7                             |
| 30 U<br>30 L | 20°         | 29.2<br>7.6<br>31.0<br>6.9                             |
| 32 U<br>32 L | <b>20</b> ° | <u>31.4</u><br>9.0<br><u>33.5</u><br>7.5               |

# Posteriors

| 34 U<br>34 L | 20° |   | 32.5<br>9.1<br>35.3<br>8.2  |
|--------------|-----|---|-----------------------------|
| 36 U<br>36 L | 20° |   | 34.0<br>10.0<br>37.6<br>8.9 |
| 30 U<br>30 L | 30° |   | 30.2<br>8.5<br>32.9<br>8.5  |
| 32 U<br>32 L | 30° |   | 31.6<br>8.5<br>35.2<br>9.1  |
| 34 U<br>34 L | 30° | - | 33.7<br>9.0<br>39.0<br>9.9  |

# Vision arising out of tradition

A new era in the manufacture of artificial teeth commenced in 1965 with the introduction of the INCOMP (injection/ compression) process. This technology was developed by a company that had been founded three years previously by Dr. Kurt Schilling, later to be known as "Lindauer Zähne".

The aim of this new technology was to substantially improve the quality of artificial teeth. Continuous optimisation of the individual process stages and of material selection resulted in a constant increase in the range of artificial teeth available and consequently in their worldwide market share. Between 1978 and 1995 the company was part of a major German chemicals company prior to its acquisition by Heraeus Kulzer in September 1995. Today the company is known as Heraeus Kulzer GmbH, Wasserburg. The plant forms an important part of one of the largest dental companies in the world.